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Abstract

In this paper a fast algorithm for computing the capacitance of a complicated 3-D geometry
of ideal conductors in a uniform dielectric is described. The method is an acceleration of
the standard integral equation approach for multiconductor capacitance extraction. These
integral equation methods are slow because they lead to dense matrix problems which are
typically solved with some form of Gaussian elimination. This implies the computation
grows like n3, where n is the number of tiles needed to accurately discretize the conductor
surface charges. In this paper we present a preconditioned conjugate-gradient iterative
algorithm with a multipole approximation to compute the iterates. This reduces the
complexity so that accurate multiconductor capacitance calculations grow as nm where m is
the number of conductors.
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Abstract

In this paper a fast algorithm for computing the capacitance of a
complicated 3-D geometry of ideal conductors in a uniform dielectric
is described. The method is an acceleration of the standard integral
equation approach for multiconductor capacitance extraction. These
integral equation methods are slow because they lead to dense matrix
problems which are typically solved with some form of Gaussian elim-
ination. This implies the computation grows like n3 , where n is the
number of tiles needed to accuracy discretize the conductor surface
charges. In this paper we present a preconditioned conjugate-gradient
iterative algorithm with a multipole approximation to compute the
iterates. This reduces the complexity so that accurate multiconduc-
tor capacitance calculations grow as nm where m is the number of
conductors.

1 Introduction

In the design of high performance integrated circuits, there are many cases For
where accurate estimates of the capacitances of complicated three dimen- Ck A&I
sional structures are important for determining final circuit speeds or func- TAB
tionality. Two examples are complicated three-dimensional dynamic mem- ,'-,ed 1
ory cells and the three-dimensional chip carriers commonly used in main- on
frame computers. In these problems, capacitance extraction is made tractable
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by assuming the conductors are ideal, and are embedded in a piecewise-
constant dielectric medium. Then to compute the capacitances, Laplace's
equation is solved numerically over the charge free region with the conduc-
tors providing boundary conditions.

Although there are a variety of numerical methods that can be used to
solve Laplace's equation, the technique that is typically used in three di-
mensions is the integral equation approach[ruehli73,rao84,ning88]. In this
approach, the surfaces or edges of all the conductors are broken into small
tiles. It is assumed that on each tile i, a charge, qi, is uniformly or linearly
distributed. The potential on each tile is then computed by summing the
contributions to the potential from all the tiles using Laplace's equation
Green's functions. In this way a matrix of potential coefficients, P, relating
the set of n tile potentials and the set of n tile charges is constructed, and
must be solved to compute capacitances. Typically, Guassian elimination
or Cholesky factorization is used to solve the equation, in which case the
number of operations is order n3 . Clearly, this approach becomes compu-
tationally intractable if the number of unknowns exceeds several hundred,
and this limits the size of the problem that can be analyzed to one with a
few conductors.

In this paper we present an algorithm for computing capacitance whose
complexity grows as inn, where m is the number of conductors. Our algo-
rithm, which is really the pasting together of three well-known algorithms
[rohklin86], is presented in three sections. To begin, in the next section one
of the standard integral equation approaches is briefly described, and it is
shown that the algorithm requires the solution of an n x n dense symmetric
matrix. Then, in Section 3, a preconditioned conjugate-gradient algorithm
is described, and it is shown to reduce the complexity of the calculation to
order mn 2 . In Section 4, it is shown that the conjugate-gradient algorithm
only requires the evaluation of a potential field from a charge distribution,
and this can be computed in order n time using a multipole algorithm. In
Section 5, some preliminary experimental results are given, and we present
our conclusions and acknowledgments.

2 The Integral Equation Approach

Consider a system of m ideal conductors embedded in a uniform lossless
dielectric medium. For such a system, the relation between the m conductor
potentials, denoted by i E R m , and the m total charges on each conductor,
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denoted by 4 E Rm, is given by 4 = CP, where C E Rx, is referred to as
the capacitance matrix. The ith column of C can be calculated by solving
for the total charges on each of the conductors when the ith conductor is at
unit potential, and all the other conductors are at zero potential. Then the
charge on conductor j, 4, is equal to Cj.

There are a variety of approaches for numerically computing the con-
ductor charges given a set of conductor potentials, and we will focus on
integral equation methods[ruehli73,rao84,ning88], as they are efficient when
applied to problems with ideal conductors in a uniform dielectric medium.
The method exploits the fact that the charge is restricted to the surface of
the conductors, and rather than discretizing all of free space, just the sur-
face charge on the conductors is discretized. The potential is related to the
discretized surface charge through integrals of a Green's functions.

Let the surfaces of a collection of m conductors in free space be dis-
cretized into a total of n tiles. The potential at the center of the i'h tile
would be the sum of the contributions to the potential from the charge
distribution on every tile. That is,

( q,(r) (1)P =i =Itie Ir- Fd

where ii is the position of the center of tile i, r is the position on the surface
of tile j, pi is the potential at ,, q,(r) is the position dependent charge
density on the surface of the jh tile, and I r denotes the Euclidian length of
r. Note that the integral in (1) is the free space Green's function multiplied
by the charge density, integrated over the surface of the pih tile, and that as
the distance between tile i and tile j becomes large compared to the surface
area of tile j, the integral reduces to T where qi is the total charge on
tile j.

There are several approaches to simplifying (1), the simplest is the
"point-matching" approximation in which it is assumed that the charge
is distributed uniformly on the tile surface[rao84]. In that case (1) can be
simplified to

L a da (2)

where qi is the total charge on tile j, and a, is the surface area of tile j.
When applied to the collection of n tiles, a dense linear system results,

Pq = p (3)
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where P E Rx'; q, p E R and

lPa X [,d =f i

Pal = 1 r da+ 1.- da (4)ai r ,r j

Note that q and p are the vectors of tile charges and potentials rather than
the conductor charge and potential vectors, 4 and h mentioned above. In (4),
the potential coefficients, Pij, have been "symmetrized" by averaging for sev-
eral reasons: the physical system is symmetric, the symmetrized equations
have been shown to produce more accurate results for a given discretization,
and a symmetric matrix problem is more easily solved. The dense linear
system of (3) can be solved, typically by some form of symmetric Gaussian
elimination, to compute tile charges from a given set of tile potentials. To
compute the jth column of the capacitance matrix, (3) must be solved for
q, given a p vector whose entries pi are set equal to one if tile i is on the
j'4 conductor, and zero otherwise. Then the ij h term of the capacitance

matrix is computed by summing all the charges on the jth conductor, i.e.
Cii = -kEConductori qk.

3 Using Preconditioned Conjugate-Gradient

In order to solve for a complete m x m capacitance matrix, the n x n sym-
metric matrix of potential coefficients, P, must be factored once, usually
into P = LLT, and this requires order n3 operations. Then, as there are
m conductors, the factored system must solved m times with m different
right-hand sides, and this requires order inn 2 operations. Since n is the
total number of tiles into which the conductor surfaces are cut, rn is neces-
sarily much less than n. Therefore, the n3 factorization dominates for large
problems.

This suggests that iterative methods might be more efficient than direct
factorization for solving the rn charge distribution problems. In particu-
lar, as the matrix is symmetric and positive definite, the conjugate-gradient
(CG) algorithm is a natural choice(golub83]. Unfortunately, the CG algo-
rithm can converge slowly when applied to the matrix of potential coef-
ficients, particularly when the problem contains widely separated pairs of
very closely spaced tiles. To accelerate the convergence of CG, an attempt
is made to factor most of the part of the problem associated with the closely
spaced tiles directly. To accomplish this, the smallest cube containing the
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entire problem is uniformly divided into a large number of cubes, typically
into as close to -2 cubes as possible. The piece of the potential coefficient
matrix associated with the tile interactions inside a cube is then factored
directly and used as a preconditioner to accelerate the CG algorithm. If the
p and q vector in (3) are reordered so that tiles contained in a given cube are
ordered contiguously, the potential coefficients representing the interaction
between tiles in a given cube will be blocks on the diagonal of P. That is,
P = PIntracube + Pintercube where Pintracube is a block diagonal matrix.

The CG capacitance extraction algorithm with the Pintrmcbe precondi-

tioner (PCG) is as follows:

Algorithm 1: Preconditioned CG capacitance extraction algorithm

Setup Phase.
Divide all the conductors into a total of n tiles.
Divide the tiles into cubes, and reorder to

make Pintracube block diagonal.
Compute the Potential Coefficient Matrix.

for i = 1 to i = n
for j = ito j = n

Compute Pj from (4).
Factor Pintracube.

Loop Through all the Conductors.
for k = 1 to m

if tile i is on conductor k, set pi = 1.
else Pi = 0.
Use PCG to solve Pq = p.
for I = 1 to m Ckl = Zkeconductorl qk.

Preconditioned CG (PCG).
The Setup.

r = p, q = 0.
Conjugate-Gradient Loop.
Repeat

Solve PintracubeZ r.
if the first iteration P = 0.
else , = zTr/(zTr)prev.

z= z + x.
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ZTr

q = q+ax.
r = r-ay.

Until Converged

4 Acceleration with a Multipole Algorithm

As can be seen from examining the computation in Algorithm 1, m problems
must be solved iteratively, and the major cost is computing the matrix P,
and in each iteration forming the product Px, both of which are order n2.
This implies that computing the capacitance matrix with Algorithm 1 is
order mn2 , and may not be much more efficient than direct factorization if
the ratio of tiles to conductors is low.

An approach for reducing the cost of forming P and computing Px in the
CG algorithm can be derived by recalling that if x is thought of as a charge
distribution, Pz is the potential due to that charge distribution. To see
how this helps simplify the computation Px, consider two widely separated
cubes, each with k tiles. Computing the contributions to the potentials at
the center of each of the tiles in the first cube due to the k tile charges in
the second cube from (4) requires k2 calculations. If all the charges in the
second cube are positive, then the k potential contributions to the first cube
can be computed approximately in k operations. This is done by assuming
the charges in the second cube contribute to potential in the first cube like
a point charge equal to the sum of the charges in the second cube located at
a "center of mass". Note that the accuracy of the approximation improves
as the separation between cubes increases.

There are a collection of algorithms based on the above idea, often re-
ferred to as multipole algorithms[rohklin86,katzenelson88,zhao87]. The de-
tails of the multipole algorithm we used are well described in[greengard87],
and only a very basic outline will be given here. In general, the potential, 9,
due to a cube of point charges at a location outside the radius of the cube
is given by the multipole expansion,

ni=O m=-n

where r, 9 and 4 are the spherical coordinates of the evaluation location,
Y,,(O, 0) is the spherical harmonic, and M. is the multipole coefficient,
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which can be computed from the charge in the cube from

k

M = qi' Y '(a i) (6)
i=1

where pi, ai, and i are the spherical coordinates of the i th charge. If
the evaluation location is well outside the cube, then the potential can be
accurately computed using just a few terms of the multipole expansion.

Consider a collection of cubes containing charges and one cube, well
separated from the others, containing several locations at which the potential
must be evaluated. It is possible to combine all the multipole expansions
for the cubes containing charges into a single local expansion from which
the potential at the evaluation points in the cube can be computed quickly.
The local expansion is given by

c"~,6~ L -LY-(0, 0) r (7)
n0 m -n

where r, 0 and 0 are the spherical coordinates of the evaluation location.
and T 7 are the locR1 expansion coefficients, which are computed from the
combination of multipole expansions for the cubes containing charges. Good
accuracy can be achieved with a few terms of the local expansion.

Truncated multipole and local expansions can be used to compute n po-
tentials at n evaluation points in order n operations, provided the charges
and evaluation points are reasonably separated. To ensure adequate separa-
tion and avoid excess calculation, careful hierarchical shifting and combining
of both the multipole and local expansions is necessary, as is well described
in [greengard87]. With the computation organized in this manner, the mul-
tipole algorithm can be used to compute most of Px in Algorithm 1, except
the part due to interactions between tiles in a given cube, and the tiles
of each cube's nearest neighbors. This implies that in Algorithm 1, if the
multipole algorithm is used to compute Pz, most of P need not be formed
explicitly. Note also that the part that must be computed explicitly includes
Ptrac, therefore the multipole accelerated PCG algorithm can still use
Pin.'e as a preconditioner. Finally, note that using the multipole algo-
rithm to compute Pz implies that both n2 steps of Algorithm 1, forming all
of P and computing Px, can be removed.
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Figure 1: Bus Structure Example with Six Conductors

5 Results and Conclusions

The multipole accelerated PCG algorithm was implemented and tested on
a simple bus structure (Figure 1). with 2, 4, and 6 conductors. In Table
1 we report the total number of tiles resulting from the conductor surface
discretization, the number of cubes into which space was divided, the time
to compute capacitance using direct factorization and PCG, the number of
iterations to achieve convergence with PCG and multipole accelerated PCG
(MPCG), and the relative error introduced by the multipole approxim-atinn.

Much additional work is under way to improve the efficiency of our
MPCG-based capacitance extraction program, and CPU time comparisons
for an efficient implementation will be presented at the conference. Future
research includes extending the approach to piecewise-constant dielectrics
and problems with ground planes.

The authors would like to thank David Ling and Albert Ruehli of the
I.B.M. T. J. Watson Research Center for the many discussions that led to the
approach presented here, as well as their help along the way. In addition we
would like to acknowledge the helpful discussions with Jacob Katzenelson,
and finally we thank the many members of the MIT Custom Integrated

Circuits group for their help and encouragement.
This work was supported by the Defense Advanced Research Projects
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2 Cond. 4 Cond. 6 Cond.
tiles 216 720 1512
cubes 64 64 64

direct time 67 2520 20160
PCG time 65 653 2613
PCG iters 7 10 12

MPCG iters 8 11 14
MPCG rel. err. 0.002 0.001 0.002

Table 1: Comparison of Extraction Methods

Agency contract N00014-87-K-825, and grants from IBM and Analog De-
vices.
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